B.Sc. I Semester Electronics Devices and Circuits Course Code: C 1 ELE 1 P 1

List of Experiments

- 1. Verification of Thevenin's and Norton's theorem
- 2. Superposition theorem
- 3. Zener Diode
- 4. LED characteristics
- 5. Transistor Characteristics
- 6. Basic Gates
- 7. Universal gates
- 8. Binary to gray code and vice versa
- 9. Measurement of voltage and time period of AC using CRO

Experiment : Verification of Thevenin's and Norton's theorem

Aim:To verify Thevenin's and Norton's theorem for network. Apparatus:Resistance box,DMM,Power supply, Resistors,Bread board. Formula:

Experiment : Superposition theorem

Observations:

	Calculated current (mA)	Measured current (mA)
When E1 source is acting alone.(X)		
When E2 source is acting alone.(Y)		
When both E1 and E2 are acting (Z)		

Result:

ner current I(mA)	Voltage across diode V(v)	Zener
	L	
	ner current I(mA)	ner current I(mA) Voltage across diode V(v)

Observations:							
Current	through	Voltage	across	RED	Voltage	across	Green
LED(mA)		LED(v)			LED(v)		
Result:							

Experiment : Transistor Characteristics

AIM: To study the input and output characteristics of a transistor in Common Emitter configuration. And determine the h-parameters.

Apparatus: Transistor BC 107, No. 2 Resistors, Bread board, Dual DC Regulated Power supply, DMM'S, Connecting wires (Single Strand) Few.

Formula: h-parameters

Input impedance = hie = Ri = VBE / IB (VCE is constant)

Reverse voltage gain = hre = VEB / VCE (IB = constant)

Output admittance 1/hoe = Ro = IC / VCE (IB is constant)

Forward current gain = hfe = IC / IB (VCE = constant)

Graph:

Observations:

	Input	Characteristics	5	
V _{BB} (Volts)	$V_{CE} = 0$	$V_{CE} = 0V$		5V
	V_{BE} (Volts)	$I_B(\mu A)$	V _{BE} (Volts)	$I_B(\mu A)$
		5		

Output Characteristics						
V _{CC} (Volts)	$I_{\rm B} = 0$	μA	$I_{\rm B} = 20$	μA	$I_{\rm B} = 40$	μA
	V _{CE} (Volts)	$I_{C}(mA)$	V _{CE} (Volts)	$I_{C}(mA)$	V _{CE} (Volts)	$I_{C}(mA)$
			5			

Result:

Experiment : Basic Gates Aim: Verification of truth tables of NOT, OR, AND, NAND, NOR, XOR and XNOR gates using IC's. Apparatus: Power supply, Bread board, Resistor, IC's. **Basic Gates and Truth Table:** 1. NOT gate **INPUT OUTPUT** U1A 0 1 7404N 1 0 2. OR gate U1A **INPUTS OUTPUT (Y)** 7432N B A 0 0 0 0 1 1 0 1 1 1 1 1 3. AND gate U1A **INPUTS OUTPUT (Y)** B A 7408J 0 0 0 0 1 0 0 0 1 1 1 1

4. NAND gate

U1A

INPUTS		OUTPUT (Y)
Α	B	
0	0	1
0	1	1
1	0	1
1	1	0

5. NOR gate

7402N

<u>)</u>

	INPUTS	OUTPUT (Y)
Α	B	
0	0	1
0	1	0
1	0	0
1	1	0

6. XOR gate

7486N

INPUTS		OUTPUT (Y)
Α	B	
0	0	0
0	1	1
1	0	1
1	1	0

7. XNOR gate U4A

)~

	INPUTS	OUTPUT (Y)
Α	B	
0	0	1
0	1	0
1	0	0
1	1	1

Result:

7))

74L \$266N

Experiment : Universal gates

Aim:Implementation of various gates by using universal properties of NAND & NOR gates and Verify the truth table.

Apparatus: Power supply, Bread board, Resistor, IC's.

1)Verification of different gates using NAND gate <u>NOT gate</u>

×	F
0	1
1	0

AND gate

×	У	F
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x	У	F
0	0	0
0	1	1
1	0	1
1	1	1

Experiment : Universal gates

Aim: To convert binary to gray code and vice versa.

Apparatus: Power supply, Bread board, Resistor, IC's(7486).

A)Binary to Gray:

	BIN	ARY		GRAY CODE				
Inputs				Outputs				
B3	B2	B 1	B 0	G3	G2	G1	G0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

Using XOR Gates:

<u>, </u>	ay				LADA	1.00	DE
GRAY CODE				BINARY CODE			
Inputs				Outputs			
G3	G2	G1	G0	B3	B2	B 1	B0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

Logic Diagram:

Result:

Experiment :Measurement of voltage and time period of AC using CRO

Aim:- To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.

Apparatus:- A C.R.O and a signal generator.

Frequency/Time Period measurement :

S.No.	Peak to peak (Horizontal) length (Divisions) (l)	Time-base Sec/Div (m)	Time-period T = mxl Sec.	Measured frequency f = 1/T Hz	Applied Frequency Hz
1.					
2.					
3.					
4.					
5.					
6.					

Procedure:-

Study of waveforms: To study the waveforms of an A.C voltage, it is led to the y – plates and the time base voltage is given to the X-plates. The size of the figure displayed on the screen, can be adjusted suitably by adjusting the gain controls. The time base frequency can be changed, so as to accommodate one, two or more cycles of the signal. There is a provision in C.R.O to obtain a sine wave or a square wave or a triangular wave. Measurement of D.C.Voltage : - Deflection on a CRO screen is directly proportional to the voltage applied to the deflecting plates. Therefore, if the screen is first calibrated in terms of known voltage. i.e. the deflection sensitivity is determined, the direct voltage can be measured by applying it between a pair of deflecting plates. The amount of deflection so produced multiplied by the deflection sensitivity, gives the value of direct voltage. **Measurement of A.C voltage :** - To measure the alternating voltage of sinusoidal waveform, The A.C. signal, from the signal generator, is applied across the y-plates. The voltage(deflection) sensitivity band switch (Yplates) and time base band switch (X plates) are adjusted such that a steady picture of the waveform is obtained on the screen. The vertical height (1) i.e. peak-to-peak height is measured. When this peak-to-peak height (1) is multiplied by the voltage(deflection) sensitivity (n) i.e. volt/div, we get the peak-to-peak voltage (2Vo). From this we get the peak voltage (Vo). The rms voltage Vrms is equal to Vo/2. This rms voltage Vrms is verified with rms voltage value, measured by the multi-meter.

Measurement of frequency : - An unknown frequency source (signal generator) is connected to y- plates of C.R.O. Time base signal is connected to x - plates(internally connected). We get a sinusoidal wave on the screen, after the adjustment of voltage sensitivity band switch (Y-plates) and time base band switch (X-plates). The horizontal length(1) between two successive peaks is noted. When this horizontal length (1) is multiplied by the time base(m) i.e. sec/div , we get the time-period(T). The reciprocal of the time-period(1/T) gives the frequency(f). This can be verified with the frequency, measured by the multi-meter.

Precautions :- 1) The continuity of the connecting wires should be tested first.

2) The frequency of the signal generator should be varied such that steady wave form is formed.

Results : -